
2025-11-03 02:11:24
選擇性非催化還原(SNCR)是一種在850-1100℃高溫環境下,通過噴入含氨基還原劑(如氨水、尿素溶液)將煙氣中的氮氧化物(NOx)還原為無害的氮氣(N?)和水(H?O)的脫硝技術。其重點反應如下:氨水作為還原劑:4NH3+4NO+O2→4N2+6H2O尿素作為還原劑:CO(NH2)2+2NO→2N2+CO2+H2O關鍵溫度窗口:850-1100℃,需通過爐膛溫度監測與控制系統精確維持。SNCR技術以低成本、簡單系統在中小型機組與預算有限場景中占據優勢,但需解決氨逃逸與溫度控制難題。未來通過智能控制、材料升級及系統集成,其應用范圍與效率將進一步提升,與SCR形成互補,共同滿足多樣化環保需求。加強鍋爐環境污染治理,是履行社會責任、推動可持續發展的必然要求。江蘇省 燃氣環境污染治理項目管理

生物質鍋爐三脫工藝包括:1.脫硫(Desulfurization):去除燃燒過程中產生的二氧化硫(SO?)。2.脫硝(Denitrification):去除氮氧化物(NOx)。3.脫塵(Dust Removal):去除煙塵和顆粒物。生物質鍋爐煙氣特性與排放挑戰生物質鍋爐以農作物秸稈、木屑等為燃料,具有低碳環保優勢,但其煙氣成分復雜,治理難度大:硫氧化物(SO?):濃度波動于120-600 mg/m?,主要來源于燃料中有機硫的氧化及硫酸鹽分解。氮氧化物(NOx):以熱力型、燃料型為主,燃燒純生物質時濃度約120-250 mg/m?,摻雜模板等燃料后可達600 mg/m?。顆粒物:含堿金屬(K、Na)質量分數超8%,易導致設備腐蝕及催化劑中毒。燃氣鍋爐環境污染治理方案設計防積灰結構的對流受熱面,通過自振式清灰裝置保持換熱效率穩定。

三脫工藝技術體系(一)脫硫工藝:分級控制與高效吸收爐內石灰石脫硫原理:爐內噴入石灰石(CaCO?),煅燒生成CaO后與SO?反應生成CaSO?。需配合爐后脫硫滿足超低排放。SDA旋轉噴霧半干法原理:Ca(OH)?漿液霧化后與煙氣接觸,生成CaSO?/CaSO?。SDS干法脫硫原理:NaHCO?高溫分解為Na?CO?,與SO?反應生成Na?SO?。(二)脫硝工藝:還原與氧化協同SNCR(選擇性非催化還原)原理:850-1100℃噴入尿素/氨水,還原NOx為N?。效率:30-70%,成本低但需精細控制溫度。挑戰:生物質燃燒波動性導致效率不穩定。SCR(選擇性催化還原)原理:300-420℃下,催化劑(如抗堿金屬板式)促進NH?還原NOx。臭氧氧化+濕法吸收原理:O?將NO氧化為NO?,再通過水洗/堿液吸收。優勢:可同步脫除VOCs及二噁英,效率達80%以上。局限:運行成本高,需配套廢水處理。(三)脫塵工藝:分級過濾與材料適配旋風除塵+布袋除塵流程:旋風除塵預處理大顆粒(效率≥80%),布袋除塵(PPS濾料)過濾細顆粒(效率≥99%)。關鍵:濾料需耐高溫(≥260℃)、抗堿金屬腐蝕。案例:某生物質鍋爐項目通過二級除塵,顆粒物排放濃度降至5 mg/m?。靜電除塵原理:高壓電場使顆粒物帶電后吸附。
鍋爐運行產生的危害有:煙塵(顆粒物)形成機理:煤質影響:煤中灰分含量越高、水分越少,煙氣含塵濃度越高。通過洗選煤可降低灰分,減少排煙中的含塵量。燃燒方式:燃燒方式對煙塵量的影響大于煤質。例如:層燃爐:煙塵濃度范圍為2000-12000 mg/m?。室燃爐:煙塵濃度范圍為15000-30000 mg/m?。流化床爐:煙塵濃度范圍為10000-25000 mg/m?。燃燒組織:風量調節是關鍵。風量過小會導致未完全燃燒,風量過大則會增加煙氣流速,攜帶更多未燃燒碳粒,從而增加煙塵量。鍋爐負荷增加時,煤量加大,煙塵量自然增多。危害:煙塵中的微粒(如PM?.?)會懸浮在大氣中,對人體健康和環境造成嚴重影響,同時還會污染建筑物和衣物。 秸稈焚燒時,會產生滾滾濃煙,其中含有大量的煙塵和有害氣體,嚴重污染周邊地區的空氣質量。

鍋爐在運行中會產生的有害物質有二氧化硫(SO?)形成機理:硫分的燃燒:煤炭中的硫分為有機硫和無機硫(如黃鐵礦FeS?)。燃燒時,硫分與氧氣反應生成SO?,反應方程式為:4FeS2+11O2→2Fe2O3+8SO2SO?的生成:在高溫條件下,SO?與自由氧原子反應生成SO?。氧原子來源于氧在爐內的高溫離解,或受熱面表面的催化作用。此外,煤中的硫酸鹽(如CaSO?)熱解也會產生SO?,反應方程式為:CaSO4→CaO+SO3危害:SO?是形成酸雨的主要物質之一,對農作物、建筑物和人體健康均有害。加強對鍋爐操作人員的培訓和管理,提高其環保意識和操作技能,確保設備穩定達標運行。安徽省 鍋爐環境污染治理工程運營
定期對鍋爐進行維護保養和檢修,確保設備正常運行,防止因故障導致污染物超標排放。江蘇省 燃氣環境污染治理項目管理
生物質鍋爐的中心優勢可再生能源屬性生物質鍋爐以農業廢棄物(秸稈、木屑)、林業殘余物等為燃料,這些資源可循環再生,減少對化石燃料的依賴。在“富煤貧油少氣”的能源結構下,其補充作用明顯,且符合全球可持續發展趨勢。環保排放優勢低污染排放:燃燒后SO?排放量<33.6mg/m?,煙塵排放量<46mg/m?,遠低于燃煤鍋爐的**標準(SO?≤100mg/m?、煙塵≤100mg/m?)。碳循環中性:生物質燃燒釋放的CO?可被植物光合作用吸收,實現碳循環,助力碳中和目標。經濟性與廢物利用燃料成本低:生物質顆粒燃料成本只為煤炭的1/3-1/2,且利用廢棄物減少環境污染。運行效率高:采用沸騰燃燒、分層燃燒技術,熱效率可達90%以上,煙氣余熱回收進一步降耗。智能化與自動化配備全自動控制系統,支持自動點火、清灰、給料,操作簡便,降低人工成本,并實現精細燃料投送,減少浪費。應用場景大范圍覆蓋工業供熱(紡織、化工、食品行業蒸汽供應)和民用采暖(居民小區、學校、**),尤其在農村和偏遠地區推廣迅速。江蘇省 燃氣環境污染治理項目管理